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Intensive fluid injection into a hypersonic stream from the surface of a finite 

length plate is considered. The injected fluid is assumed perfect and inviscid, 

and the ROW in the injection region, separated from the main stream by a 
contact surface, is defined by approximate “thin layer” equation&A complete 
analytic solution of the problem is presented. It leads to the establishment 

of universal formulas in similarity variables that define the contact surface 
form and pressure distribution on the plate, These universal formulas are 

valid for any given pressure at the plate trailing edge. 

Models of perfect incompressible liquid and perfect gas were used in [l -lo] for 
solving the problem of flow in the region of injection of gases and combustible mixtur- 
es into supersonic streams. Transverse pressure gradients were neglected and equations 
of the thin layer were used. Theoretical and experimental investigations [4 -7,9 - 

ll] of flows with intensive injection from the surface of bodies of finite dimensions in 
a supersonic stream have shown that pressure at the trailing edge plays an important 

part in the formation of flow in the injection region. In [4,5,9] the problem of 

liquid and gas injection from the surface of a wedge into super- and hypersonic streams 
were solved by numerical integration of the thin layer equations. Integral equations 

were obtained for pressure at the plate surface in [6,7, lo], when solving similar 

problems. The latter approach made it possible to obtain in [lo] and in the present 
investigation complete analytic solutions of problems of super- and hypersonic flows 
over the layer of fluid injected from a plane surface. Analytic solutions were obtain- 
ed for injection uniformly distributed over the length of the plate. Self-similar fluid 

injection conforming to power law was investigated in [3,4,8]. 

1. S t a t e m e n t o f t h e p r o b 1 e m. Let us consider the hypersonic 
flow of gas over a thin layer of liquid injected from the surface of a plane plate of 
finite length. The plate is parallel to the velocity vector of the oncoming stream and 
the liquid is injected uniformly over the whole length of the plate from the leading to 
the trailing edges in a direction normal to the plate. We use a Cartesian coordinate 
system with the 5 -coordinate on the plate surface and the origin at its leading edge. 
We assume the relative thickness of the injected liquid layer and the inclination of its 
streamlines to be small, We denote the order of that relative thickness by 6 . 

For the determination of pressure at the contact surface under hypersonic flow 

conditions we use the formula of tangent wedges 
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P= -& pJJ,2 sin2 a (1.1) 
or Newton’s formula [12] 

where p,, Ua, M,, y are, respectively, the density, velocity, Mach number, 
and adiabatic exponent of the onco~g stream, a is the angle between the tangent 

to the contact surface and the x-axis, The classic Newton’s formula [12] is a 

particular case of formula (1.1) for y = 1. Hence taking into account the smallness 
of inclination of the contact discontinuity surface, we can define the dimensionless 

pressure p’ which is of order unity, by formulas 

P=& p,UmWp’, p = pWp’ (1.3) 

which correspond to formulas (1. I.) and ( 1.2) for pressure. 
We introduce in the injection region the dimensionless variables of order unity 

x=zx, y=ciEY, u=+4f 
v = vwvr, p -_ p. J& 2p’ ( 1 

(1.4) 

where I is the plate length, and pO and V, are, respectively, the density and 

normal velocity of the injected fluid. The comparison of formulas (I., 3) and (1.4), 

using expressions (1.1) and (1.2) for pressure at the contact surface yields for the 

relative thickness of the layer, respectively 

Note that the order of the relative thickness of the injected layer determined in 
[LLO] for moderate suprsonic velocities of the oncoming stream differs from the obtain- 
ed above for hypersonic velocities of flow; it is equal to the ratio of velocity heads to 

power Ifa. 
Using dimensionless variables (1.4) the following system of equations of thin 

layer in Mises variables: 

a d2 ( 1 -7 
ax 2 

ap’ () @J’ () ay 1 
+=I-, a’y=, a\y=u’ 

a\p , au, 
-=_v, 
i3X 

-Fg = u’ 

was obtained in [S] from Euler’s equations in zero approximation with respect to 6” . 
Formulas (1.1) and (1.2) in zero approximation with respect to 6’ yields 

p’ = (ClY, I dX) 2 (1.5) 



894 J. J. vfgdotovich 

where Ys is the dimensionless ordinate of the contact surface. 
Integrating the system of equations of the thin layer we obtain for the contact sur- 

face ordinate the following expression [63: 

Y, (X) = 2-‘/z -f [p’(g) - $(X)1+% 
0 

which together with (1.5) yields for the pressure on the plate the integral equation 

To obtain a solution of Eq. (1.6) that would correspond to some pressure specified 
at the plate trailing edge it is necessary to add the boundary condition p’ (1) = pof , 
where po’ is the pressure at the trailing edge normalized in conformity with formulas 

(1.3). For function X (p’) we can obtain the following equation: 

(1*7) 

Integrals (1.7) have an infinite limit of integration, since at normal injection the 
pressure by virtue of (1.5) becomes infinite. Equation (1.7) is Linear. Its solution 
5e (p’) along the semiaxis 0 < p’ < + 00 satisfies the boundary condition 

$0 (0) = 1 and is of a universal nature. Any solution of Eq. (1.7) that corresponds 
to some pressure po’ is expressed in terms of that pressure by formula x (P’) = 
X0 (p’) i x0 (PO’), PO’ <PI -c + 00. 

2. S o lu t i o n of the in t cg I a 1 e qu at i o n, using thesubstitu- 
tion for the variable p’ = e-’ with - 00 ( t ( + 00 we transform Eq. (1.7) 

to 

(2.1) 

x,(e-‘p-4, t++oQ 

To make possible the application to Eq. (2.1) the two-sided Laplace transforms 
~131 we estimate the order of the unknown function decrease at - co. Let us assume 
that the inequality 

(x0’ (e-‘) 1 < const e(b+‘lz)t, t < 0 (2.2) 

holds for some b > 0 . From the left-hand side of Eq. (2.1) we, then, obtain by 
virtue of the convolution property that inequality (2.2) remains valid when b+f 
is substi~ted for b and, consequently, is satisfied for any positive b. A~u~ng now 
that function %a’ (e-J> increases exponentially at + 00, we find that the operat- 
ional correspondence 

L IX: (e-‘)I = ‘f Q’ (e”‘) e+ &t = h (2) (2.3) 
--m 
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where L is the Lap&e operator, has some conv~gence.half-plane Re z > a. 
Applying the convolution theorem [I33 to (2. l), by virtue of the operational cor- 

respondence [ 141 

L [ (1 - e-‘)-‘/z H (t)] = riz’i & , Rez>O 

where H (t) is the Heaviside unit function and r (z) is a gamma unction, for 
the determination of h (z) according to Laplace we obtain the functional equation 

h z - + ( 1 r (4 I/n 
r (2 + ‘iz) 

= ?h(z++), Rez>max O,a+$ 
( 1 

(2.4) 

Note that the solution of Eq. (2.4) has been determined with an accuracy to some 
arbitrary periodic function w (z) of period unity. 

Let us find the particular solution h, (z) of the equation. Taking the logarithms 
of both sides of Eq. (2.4) and differentiating twice the result, we obtain 

&hlh,(z++-$lho(Z-~) = (2.5) 

~~(z+~)-~~(z+~~ 

where (II, (z) is the logarithmic derivative of the gamma function. 
We introduce function 8 (t) in conformity with the operational correspondence 

-$lh@(Z) = L[8@)] (2.f9 

Applying to (2.5) the inverse Laplace transform and using the operational corres- 
pondence [ 143 

L [- tern’/2 (1 + evf~2)-r H (t)] = I#’ (z + 1) - 9’ (z + l/J 

we obtain for function 6 (t) the expression 

e(t) = 
1 - ,-t/2 

_1 te-‘H (t) 
(1 -e )2 

(2.71 

Applying now the Laplace transform to (2.7), we obtain 

By integrating this expression twice we obtain 

Inho(a)=z~‘*i~(i)d5+~z+4= (Z++jlnr(z++)- (2-B) 
2 

G-*f* 
zlnr(z)- 5 lnr(Cjd5+kz+p 

z 

where k and Q ‘are constants of integration. We determine k = l/s In ft/n / 2 - 
Iin by substituting expression (2.8) into the logarithm of Eq. (2.4) and using the 
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equality cl53 
1 

1 lnlY(Qdc ~= ln1/% 
0 

Moreover, as shown below, condition XO (e-‘) * 1 is satisfied, as t -+ i-00, 
when by appropriate selection of constant q we obtain h,(O) = 1. We then have 

‘I2 

G = [ 111 I’(< + 1) dc : - 0.0428536 
0” 

where the definition of the constant G conforms to [16]. 

The asymptotics of function ho (z) at infinity can be obtained from (2.8) using 
the asymptotics of the gamma function [17] 

Inho(z lnz+kz+~lnz+q-_---A+ 

i+..., ~2~400, IargzI<n--6 E>O 
12822 

(2.9) 

The general solution of Eq. (2.4) is of the form h (2) = w (2) ho (2). As a 
Laplace image, function h (z) must be holomorphic in the half-plane Re z > a 
and approach zero at the ends of any straight line Re z = c, c > a. Formula 

(2.8) makes it possible to conclude that only points z =: - m, - r/a - m can 

be singular points of function ho (z) . Hence function 0 (2) = h (2) / ha (2) is 

holomorphic for Re z > mas (a, - 1). From this, owing to the periodicity of func- 

tion o (z) of period unity, follows its holomorphy throughout the complex plane. 
From (2.9) we find that on any straight lineparallel to the imaginary axis and lying 
in the right-hand half-plane (m is integer) 

~hO(z)~>constexp(--~~lmz~) 

The condition for h (z) approaching zero implies that 

(2.10) 

The entire periodic function of period unity which in the period band satisfies 
inequality (2.10) is constant. This statement can be simply proved by the method 

described in [18]. Thus we can set in what follows function o (z) equal unity. 
We introduce the universal function y. (p’) which defined the contact surface 

ordinate 
p: 

Using Mellin’s transform we obtain 
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s(e-*) = & 
c+im 

S 
ho (2) ezt $ 

c--f00 

y0(e-*) = & c~~12~(a++)ezf-$ 
c-i00 

Let us investigate the behavior of function ho (z) at points z = 
3 (4.. . . . . We have the following expansions in power series [ 153 

(z++)J)(z++) = (&-m)Ir,(f-72)+ 
[(&+q~-m)+~(~-mj~(3+?77)-~ 

‘cv 

(2. 11) 

m, 772 = 1, 

2.12) 

- 

~[(-l)~(2”-1)5(n)+(m-~)(-Yr”(2~t’--l)~(n.+l)$. 
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Sz (II, m - 1)-(m-+)S,(n+l,m- 1;+tn?.,“, 
Iz+ml<% 
- z’ll, (2) = - -++w~z+1)+1+ 

I%.(2) - $(m + 1) + 7=%(2,772)1(e -t m.) + 
m 

c 
[(- f)n+lm 5(72+v+(--l)n+w7!-t 

IL=3 

mSl(n+l,m-l)-S,(n,nz-l)](~i-“;)“. i~-+:nj<r 
77% 

Sl(72, 772) = c ken, S2(7z, m) = 
k=l 

2 (A- fj-“) 
k=l 

m = I,&. . . 

where 5 (n) is the Riemann zeta function. 
The equality 

after integration and involution yields 

ho(z) = pm@ -t m)-m ssp[ i a,,(2 -t m)n]. ~,i-n+Yf (2.13) 
,,=I 

al=+- $(2m-- l)ln2+mSl(l,r72- I!-- 

( 
m-- ; )w ,m-1)-j-k 

a2 = (“I4 - m) P (2) - In 2 + (m / 2) SI (13, m - 11 - 
(m/2- 1 / 4) s, (2, 772 - 1) $ ‘12 If;, ;1. In, - I) - 
VzS1(l, m-l) 
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a, = -+ [m&(n, m - 1) - s, (n - 1, 771 - ‘f) + sr (12 - 1, I??. - 1)- 

( nz-+S(Iz,7?2-l)+(-l)n-1&l-1)(2n-1-2)+ 

(-I)“-l~‘(n)(2”m-2rra+$-2”‘)], )... n=3,4 

where c = 0.577215 is Euler’s constant and the constant of integration pm can 

be directly determined from (2.4). Using the recurrent formula (2.4) m. times we 
obtain 

m-1 __ 

ho (2 - m) = ho (4 kIl” v 4 

in which allowance is made for ho (0) : 1. As imphed by (2.13), ho (z) has 
poles of order m at points z = _ m . It can also be shown that at points z z 
- Va - m function ho (z) has m zeros. 

The asymptotic expansion (2.9) shows that Jordan’s lemma is applicable to in- 
tegrals (2.11) and the latter can be represented in the form of series in residues of 

integrands. For instance, for the first integrand of (2.11) we have the equality 

ho (4 fw (4 f = m t~~m,m exp(- m+xp ai t r + + 
[( 1 

X (2.14) 

(Zfm~+~(un+&)(Z+ m,“] 
7X=2 

12 + ml < 1, m =- 1,2,. . . 

which makes it possible to determine the residues at each pole Z = -m. For this 
it is necessary to calculate the coefficients (z + mjrn-l of the exponent expansion 
in the right-hand side bf (2.14). The calculation of coefficients of the expansion of 
the exponent in power series is conveniently carried out using the recurrent formula 

(see [19] ). 
Hence functions z. (e-l), y, (e-‘) can be represented in the form of the follow- 

ing series that are convergent for all t: 

x0 (e-‘) = 1 -+ *jI e-mtP,_l (t) 

y. (e-‘) = ho (-&) + 2 e-(m+‘i~)tQ,_, (t) 
m=1 

where Pm (t), Q, (4 are polynomials of power m . Returning to variable P’ 
we obtain 

xo(p’) = 1 -e P’ + E p’mPm-~ (- ln p’) 
77&=8 

(2.15) 
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yo (p’) = 2%c”~ wp($+ 2G)-+“‘+ 
CD 

c P ‘m+‘irQm_l (- In p’) 
77X=2 

The asymptotics of functions Z. (II’), Ya (p’) when p’+ -/- 00 can be obtain- 
ed by applying the saddle- point method to integrals (2.11) [20]. 

We present here only the calculation of asymptotics of function x0 (e-‘). Asympto- 
tic representation of the second universal function can be similarly derived. We 
introduce the notation 

a(z) = In h,(z)- In 2 + zt 

The saddle point % lies on the abscissa and is the positive root of equation 

a’ (2) = 0, t < 0 (2.16) 

In the conformity with (2.9) we have the asymptotic expansions 

a’(z)=+lz+t+k+~-&;A ++&) 
1 

a”(z) ==+-gp+ 7 o(G) 
(2.17) 

To determine the asymptotic representation of the positive root of Eq. (2.16) as 

t - - co we use Newton’s iteration method [20], taking %,, = 2~1-1 exp (- 2t) as 

the zero approximation. The third iteration for the root of Eq. (2.16) yields the ex- 
pression 

,=,0++-++++o(&) (2.18) 

After substitution of (2.18) into (2.9) and (2.17) we obtain 

a (El = - -+-+lnc,--$+.q--$$-+$- 
0 0 

&O($F) 

a”(5)=-&+0(-&) 

We integrate the integral in (2.11) along the straight line Imz = % whose dir- 
ection at the saddle point coincides with the line of steepest descent. The expansion 

of a (2) in Taylor series in the neighborhood of point % and substitution of the vari- 

able of integration z = % + ia’ (%) 11 transforms (2.11) to 

z. (e-‘) = 
e=p (a (4)) OJ s II 1 clIV 

mN (4) e=P -2a” V - 42 (c”)S 9* + 

CIvr 
j f i 

1 am ,v 
3&j (o”)6 rla t . . . cm a” 6 (q v - I.&) ((y)5 ‘I5 + * * . )I a 

(2.19) 

The following equalities are valid: 
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a” (5) 
[a” (4),2 = - 2 -)- 0 + , ! 1 2’ (4) 

La” WI2 
=8-:~ 0 (&, 

av (0 
la,, (4)]4 = - 48 !- 0 (+) 9 

avl (4) - 384 + 0 i&j [art (E),2 - 

In all of the above formulas only terms that are necessary for obtaining asymptot- 
its of function q, (e-l) with an accuracy to 0 (zo3) are retained. The Laplace 
method can be applied to integral (2.19) [20]. 

After computations we finally obtain 
3,’ d 

x0 (e-‘) - k- exp -T 
C 

FO 

l/s 

_ A#- + q) (1 -I- +& + 1o:759 
737L8<,2 

-+ . . .) 

q3% 
Yo(e-f)--eexp (-4-G -&q) x 

1 _j_ _2& - 182831 
73728&,2 

+ . . . 
0 

Returning to variable p ’ we have 

(2.20) 

i 

137n _I_ 107759na 
I+- 1 

384p’2 294912/ 
-i_ . ..I 

Yo (P’) - 
2% ($)“” $-” exp (_ E$ + f) x 

i 

2331~ 
1+-- 

18283W 

38Gp’s 294912# 
p’ --> + 00 

Formulas (2.15) and (2.20) for universal functions make it possible to determine 
pressure distribution on the plate and the contact surface form. 

The universal curves which define the distribution of the pressure coefficient q, 
2a2p’ on the plate and the contact surface form y. == y. (z,) are 

Fig. 1 Fig, 2 

shown in Fig. 1 in terms of dimensionless variables by solid and dash lines, respectiv- 
ely. For obtaining pressure distribution on the plate and the contact surface form that 
correspond to some pressure p. ’ at the trailing edge the solid Line in Fig. 1 is to be 



stretched along the 
ate in proportion to 
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2 -coordinate, and the dash line also in the direction of the ordin- 

1 / x0 (PO’) 9 and take their parts contained in the interval 0 
_ 

d X < 1. The dependence of the resultant force 
po’ at the trailing edge is shown in Fig. 2. 

F acting on the plate on pressure 
Since the considered here problem is 

plane, force F is calculated over a strip of the plate of unitary width. In Fig. 2 f == 

tj2F / (ZpoVw2). 

The author thanks V. A. Levin for guidance in this work. 

REFERENCES 

1. T h 0 m a s , P. D., C o n t i, R. J., and K r u g e r, C. H., Flow over finite 
bodies with massive injection. AIAA Journal, Vol. 6, No. 11, 1968. 

2. T h o m a s, P. D., Flow over a finite plate with massive injection. AIAA 

Journal, Vol.7, No.4, 1969. 

3. Antonov, A. M., and K o m a s h e n k o, A. P. , Some self-similar solutions 
of the problem of considerable injection through a plate in a supersonic stream. 
Prikl. Mekhan., Vo1.5, No. 10, 1969. 

4. M at v e e v a, N. S. and N e i 1 and, V. Ia., Considerable injection on a body 
of finite length in a supersonic stream, Uch. Zap. TSAGI, Vol. 1, No.5,1970. 

5. N e i 1 a n d, V. Ia., Injection of gas into a hipersonic stream. Uch. Zap, TSAGI, 
Vol.3, No. 6, 1972. 

6. Levin, V. A., Considerable injection on the surface of a body in a supersonic 
stream of gas. Izv. Akad. Nauk SSSR MZhG. No.5, 1973. 

7. Z a k, L. I., Supersonic flow of gas over a body of finite dimensions in the pre.s- 
ence of intensive injection of combustible gas mixture on its lateral surface. 

Nauchn. Tr. Inst. Mekhaniki MGU, No.32, 1974. 

8. A n t o n o v, A. M. and Z a its e v, A. V., The class of self-similar solutions 
of problems of flow over porous axlsymmetric bodies of hypersonic gas stream. 

Prikl, Mekhan., Vol. 10, No. 12, 1974. 

9. L i p a t o v, I, I., supersonic flow over a wedge of finite dimensions with con- 
siderable injection of gas through its surface. Uch. Zap. TSAGI, Vol. 6, NO. 

5, 1975. 

10. Vigdorovich, I, I. and Levin, v. A., Considerable injection of fluid 
into a supersonic stream from the surface of a plate of finite length. In: 
Nonequilibrium Flows of Gas and Optimal Forms of Bodies in a Supersonic 

Stream. Izd. MGU, 1978. 

11, Kharchenko, V. N., Experimental Investigation of Hypersonic Flows over 
Cones in the Presence of Considerable Injection. Tr. TSAGI, No. 1374,1972. 

12. C h e r n y i, G. G. s The Flow of Gas at High Supersonic Velocity. mgl.ish 

translation, Academic Press, N.Y. and London, 1961. 



902 I. I. Vigdorovich 

13. V a n d e I P o h 1, B. and B I e m m e r, H., Operational calculus on the 
Basis of the Laplace Bilateral Transform. Cambridge, C. U. P., 1950.1 

14. B a t e m a n, H. and E I d e 1 y i, A., Tables of Integral Transforms, New York, 
McGraw -Hill, 1954. 

15. Bateman, H. andErdelyi, A., Higher Transcendental Functions, New 
York, McGraw -Hill, 1953. 

16. British Association for the Advancement of Science; Mathematical Tables I, 
Circular and hyperbolic functions, exponential, sine and cosine integrals, 
factorial function and allied functions. Hermitian probability functions. 

Cambridge University Press, 1951. 

17. J a h n k e, E., E m d e, F., and L b s c h, F., Special Function% Formulas, 
Curves and Tables. McGraw-Hill, New York, 1953. 

18. M a r ku s h e v i c h, A. I., Theory of Analytic Functions, Vol.2, Moscow, 
“Nauka”, 1968. 

19. Fikhtengol’ts, G. M., Course of Differential and Integral Calculus, Vol. 
2. Moscow, “Nauka”, 19’70 (See also in English, Pergamon Press, Book No. 

10060 (vol. 2), 1965). 

20. d e B r e in, N. @. , Asymptotic Methods in Analysis. Moscow, Izd. Inostr. 

Lit., 1961. 

Translated by J, J. D. 


